SHORT COMMUNICATION

TERPENOIDS OF NIGERIAN TERMINALIA SPECIES*

O. G. IDEMUDIA

Department of Pharmaceutical Chemistry, University of Ife, Ibadan Branch, Ibadan, Nigeria (Received 28 January, 1970)

RECENTLY, we reported the isolation of terminolic acid¹ from the ether extracts of the heartwoods of *Terminalia laxiflora*, T. avicennioides and T. glaucescens² (Combretaceae), as well as traces of a polyhydroxy monocarboxylic acid $C_{31}H_{48}O_6$ from T. laxiflora and T. glaucescens.

We now report the isolation of terminolic acid from the ether extracts of the heartwoods of T. catappa and T. macroptera; " β "-sitosterol^{1,2} and " β "-sitosteryl palmitate^{2,3} from the petrol extracts of the heartwood and stem-bark of T. catappa; " β "-sitosterol from the heartwood of T. superba; ellagic acid;^{2,4} trimethylellagic acids^{2,5} from the ether extracts, as well as tetramethylellagic acid^{1,2} from the petrol extracts of T. ivorensis and T. macroptera heartwoods; terminolic, ellagic and trimethylellagic acids from the ether extract and tetramethylellagic acid from the petrol extract of the rootlets of T. glaucescens and " β "-sitosteryl palmitate from the petrol extracts of the leaves and fruits of T. laxiflora and T. glaucescens.

The diisopropylether extracts of the heartwoods of *T. catappa*, *T. macroptera* and *T. ivorensis* furnished the following new 31-carbon atom skeleton triterpenes isolated as their methyl esters on chromatography (Merck silica gel; ether) and crystallization (ether).

From *T. catappa*, the methyl ester had m.p. $120-125^{\circ}$; $[\alpha]_{1}^{22} + 37.4^{\circ}$; ν_{max} , 3400, 1725 cm⁻¹; λ_{max} , 225 m μ (ϵ 2900); NMR, τ 6.4; mol. wt. 532 (m.s.). (Found: C, 71.4; H, 10.0; OCH₃, 6.25%; C₃₂H₅₂O₆ required: C, 72.1; H, 9.8; OCH₃, 5.8%.) Triacetate, m.p. 98–102°; ν_{max} , 3450 cm⁻¹. (Found: C, 70.1; H, 8.9%. C₃₈H₅₈O₉ required: C, 69.3; H, 8.9%.) Tetraacetate, m.p. 84–88°. (Found: C, 68.8; H, 8.3%. C₄₀H₆₀O₁₀ required: C, 68.55; H, 8.6%.)

From *T. macroptera*, the methyl ester had m.p. $140-149^{\circ}$; $[\alpha]_D^{22}+9\cdot8^{\circ}$; mass 560; τ 6·1, 6·38; ν_{max} , 3,400, 1725, 1585 cm⁻¹; λ_{max} , 225 m μ (ϵ 4700) and 268 m μ (ϵ 4500). (Found: C, 70·5; H, 9·36; OCH₃, 11·1%.) C₃₃H₅₂O₇ required: C, 7·07; H, 9·35; 2-OCH₃ 11·1%.) Triacetate, m.p. $121-125^{\circ}$; ν_{max} , 3450 cm⁻¹. (Found: C, 68·3: H, 8·8%. C₃₉H₅₈O₁₀ required: C, 68·2; H, 8·5%.) Tetra-acetate had m.p. $100-105^{\circ}$. (Found: C, 67·9; H, 8·9%. C₄₁H₆₀O₁₁ required: C, 67·6; H, 8·2%.)

T. ivorensis yielded a methyl ester, m.p. 132–135°; $[\alpha]_D^{22}$ +22·34°; mass 532; ν_{max} , 3400, 1725 cm⁻¹; λ_{max} , 225 m μ (ϵ 2650) and 263 m μ (ϵ 1100); NMR, τ 6·38. (Found: C, 72·3;

^{*} This communication is part of the work approved for the award of the Ph.D. Degree of the University of London (O. G. I.).

¹ F. E. King, T. J. King and J. M. Ross, J. Chem. Soc. 1333 (1955).

² D. E. U. EKONG and O. G. IDEMUDIA, J. Chem. Soc. (c), 863 (1967).

³ B. EICHSTEDTNIELSEN and H. KOFOD, Acta Chem. Scand. 17, 1161 (1963).

⁴ A. G. Perkin and M. Nierenstein, J. Chem. Soc. 87, 1415 (1905).

⁵ L. Jurd, J. Am. Chem. Soc. 81, 4606 (1059).

H, $10\cdot2$; OCH₃, $6\cdot4\%$. C₁₂H₅₂O₆ required: C, $72\cdot1$; H, $9\cdot8$; OCH₃, $5\cdot8\%$.) Triacetate, m.p. $115-118^\circ$; ν_{max} , 3450 cm⁻¹. (Found: C, $69\cdot7$; H, $8\cdot8\%$. C₃₈H₅₈O₉ required: C, $69\cdot3$; H, $8\cdot9\%$.) Tetra-acetate had m.p. $98-102^\circ$. (Found: C, $68\cdot7$; H, $9\cdot0\%$. C₄₀H₆₀O₁₀ required: C, $68\cdot55$; H, $8\cdot6\%$.)

In conclusion, the Et₂O extract of the root-barks of *T. laxiflora*, *T. avicennioides* and *T. glaucescens* furnished, in addition to " β "-sitosteryl palmitate and terminolic acid, a neutral compound, m.p. 297–300°; ν_{max} , 3400, 1625, 1170 and 800 cm⁻¹. (Found: C, 71·8; H, 10·8; C₂₈H₅₀O₅ required: C, 72·1; H, 10·8%.) The acetate had m.p. 166–168°, and NMR signals at τ 7·93, 7·97 and 8·0. (Found: C, 68·9; H, 9·6%. C₃₄H₅₆O₈ required: C, 68·9; H, 9·5%.)